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ABSTRACT
Massive Open Online Courses (MOOCs) received great attentions
in recent years. Most MOOCs have huge number of participants,
which usually introduce another challenge—the extremely high
dropout rate. Thus, people use a large amount of user-item interac-
tion data collected from the MOOC platform to predict the dropout
behaviors for further analysis. Dynamic embedding representation
learning presents an attractive opportunity to model the dynamic
evolution of users and items, where each user (item) can be embed-
ded in a Euclidean space. This article introduces and analyzes the
application of the joint dynamic user-item embedding algorithm
in the MOOC dropout prediction. The empirical results indicated
that the model has low dependence on data volume. Moreover, the
model is robust to label-flipping attacks. Therefore, we believe that
the model performances under different settings can be used to
guide the real-world MOOC dropout prediction.
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1 INTRODUCTION
Massive open online courses (MOOCs) have developed rapidly since
they were deployed in 2006 [1]. MOOCs break the limitations of
traditional courses in the classroom, and users from all over the
world can learn through the Internet anytime, anywhere, which
promotes the openness and sharing of education. With MOOCs,
students have greater flexibility to take courses, thus attracting
more and more students and allowing the platform itself to grow
rapidly.

The world’s top universities, such as Stanford University and
Harvard University, have releasedMOOCs for free learning by users
all over the world [2]. Stanford University launched its Introduction
of Artificial Intelligence MOOC in the fall of 2011 with more than
160,000 registered users. In China, many well-known universities,
such as Tsinghua University and Peking University, have launched
their own MOOCs in cooperation with edX and Coursera, and the
high-quality Chinese courses have won the favor of users all over
the world.

Despite the rapid growth and success of MOOCs, the online
courses also have their own problems. One glaring problem is
the high drop-out rate. Compared with the offline teaching mode,
most students who take online courses drop out of the course
midway, only a small number of users can actually complete the
relevant courses, and many users even become "zombie users" after
registering on the platform. Statistics show that even the world’s
top universities - Stanford university, Massachusetts Institute of
Technology and The University of California, Berkeley – also suffer
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Figure 1: Illustration of MOOC Dropout Prediction.

a high drop-out rate, that reaches up to 90% [1]. A high drop-out rate
is a potential factor hindering the development of MOOC platforms.
Thus, effectively predicting whether a student will drop out or not is
very important for MOOC platforms to make further interventions.

At present, the definition of dropout prediction is not unified.
According to different data sets and prediction purposes, the specific
definitions of dropout are also different, and these definitions are
introduced in detail in relevant review literature [3, 4]. As shown
in Figure 1, this paper formalizes the dropout prediction problem
as follows: predicts whether these students will interact with the
course in the future according to the interaction records of given
users for some courses in a certain period of time. Therefore, we can
convert it to a binary classification problem. During the forecast
period, if a user has activity records for a course, it is considered that
the user has not quit the corresponding course learning. Otherwise,
we assume that the user has dropped out of the course.

The MOOCs platform has a large amount of time-series user-
course interaction data, which contain various state information
of users during their study. As Figure 2 shows, these interactions
form a network of sequential interactions between the user and the
courses. Each interaction transaction has the time stamp tr and the
time spent watching the video and other relevant feature vectors
fr .

Figure 2 propose a variety of algorithms to use these data to build
a prediction model for users, and then identify users at risk of drop-
ping out of classes. By modifying the relevant syllabus and content
of the course, the drop-out rate can be reduced and participation
can be increased [5].

In all prediction methods, representation learning, that is, the
low-dimensional embedding of learning entities, provides a pow-
erful way to represent the evolution of user and course attributes
[6, 7]. Using representation learning to generate dynamic embed-
dings of user-course entities can support downstream tasks such
as user course dropout prediction.

There are several challenges in generating dynamic embedding
of user-course interaction networks using presentation learning:
(1) How to accurately predict the evolution trajectory of user’s
dynamic embedding over time. Most existing approaches [8, 9]
generate embedding only when the user has interactive behavior.
However, user intentions change over time, so user’s embedding
needs to be updated over time. (2) How to consider both the static
and dynamic attributes of entities in a unified framework. Entities
have both static and dynamic properties that do not change over
time. Most existing approaches [9, 10] consider only one of the
two when generating embeddings. (3) How to extend to large-scale
data training while maintaining the timing characteristics between

Figure 2: A temporal Interaction Network of User-Item.

Figure 3: The JODIE Model Framework.

interactions. Most models [9, 10] are trained one interaction at a
time in chronological order and are difficult to extend to large data
sets.

In 2019, Kumar et al. [11] propose a new model named JODIE
(Joint Dynamic User-Item Embeddings), which can generate the
embedding trajectory of users and projects according to the time
interaction information, and output the embedding information of
entities. JODIE model provides the possibility to solve problems
mentioned above. As shown in Figure 3, the JODIE model consists
of two types of operations - update and projection. The update
operation composed of two coupled recursive neural networks will
update the embedding of users and items when there is interaction.
At the same time, the projection operation composed of temporal
attention layer is used to predict the passage of user embedding
along with the completion time of prior interaction ∆, and the
embedding trajectory of the entity is obtained. In addition, the
JODIE model uses the Batch processing algorithm t-Batch to create
independent interactive training batches to train the model, so that
the interactions in each Batch can be processed in parallel, which
means it can be extended to large-scale data sets.
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Though JODIE is a general model that can be used to learn dy-
namic presentation learning involving multiple datasets such as
Reddit, Wikipedia, LastFM and MOOCs, we focus on the dropout
prediction problem of MOOCs in this paper. It should be noted that
in addition to the universality of dynamic presentation learning,
there are some particularities and it’s not appropriate to use JOIDE
directly to solve the problem. On the basis of relevant research,
this paper first analyzes the application of JODIE in the predic-
tion problem of MOOCs specifically, and then conducts a series of
experiments. The main contributions of this paper include three
aspects:

• Detailed analysis and introduction are made on the applica-
tion of JODIE model proposed in literature [11] in MOOC
dropout prediction.

• Experiments are conducted on different levels of user course
interactive data, and the results show that JODIE model
has low data volume dependence on MOOCs withdrawal
prediction

• Experiments show that JODIE is robust to label-flipping
attacks, with specific attacks of user-course interactive data.

2 RELATEDWORK
2.1 MOOC Dropout Prediction Algorithm
In the past, researchers mainly used conventional machine learning
algorithms such as support vector machine [12] and logistic regres-
sion [13] to predict the dropouts of users. Kloft M [12] combined
the hidden Markov model with the support vector machine, and
Xing W [14] combined the Bayesian network with the decision
tree. Unlike other studies, Chanchary FH [15] used K-means to
perform cluster analysis on the students in the MOOC platform to
automatically discover inactive users.

In recent years, deep learning has also been used to predict
dropouts. Fei M [16] converted the dropout prediction problem
into a time-series prediction problem, and made use of a recurrent
neural network (RNN) with long short-term memory (LSTM) unit
to make the prediction. Wang W [17] made prediction by combin-
ing convolutional neural network and cyclic neural network, and
the constructed model can automatically extract features from the
original data. Qiu J [18] combined the statistical information, forum
behavior data and learning behavior of users, and proposed to use
the implicit dynamic factor model to predict the learning influence
of users.

Prenkaj, B [19] gave a comprehensive overview of the problem
of student dropout prediction in their tutorial, and Prenkaj B [3]
conducted an in-depth analysis of machine learning algorithms
proposed for student dropout prediction in online courses. Please
refer to the tutorial and survey above for more information.

2.2 Dynamic Embedding Represents Learning
Representation learning can be regarded as a dimensionality reduc-
tion method, which maps each node to a low-dimensional vector
space, so it can be well applied to various downstream tasks such
as classification, prediction, regression, etc.

Several models have recently been proposed to generate em-
bedding representations for nodes (users and items) in temporal

networks. CTDNE(Continuous-Time Dynamic Network Embed-
dings) [20] used random walks that increase over time to generate
embeddings. Similarly, IgE (Interaction Graphs Embeddings) [21]
generated the final embeddings of users and items from the in-
teraction diagram. However, because the CTDNE and IgE models
generate the final static embedding of the network, the model needs
to be rerun for the new edges to create the dynamic embedding. The
DynamicTriad [22] algorithm supports dynamic embedded learn-
ing, but due to the model’s dependence on triples, it cannot run on
the two-part interactive network. Other recent algorithms, such as
DDNE (Deep Dynamic Network Embedding) [23], DANE (Dynamic
Attributed Network Embedding) [24], DynGem [25], DySAT (Deep
Embedding Method for Dynamic Graphs) [26] and Literature [27],
learn dynamic embedding from sequences of graphic snapshots, but
do not apply to user-course continuous interactive data in MOOCs.
Sun, L [28] proposed to learn dynamic graph representation in hy-
perbolic space, and introduced Temporal GNN (TGNN) based on
a theoretically grounded time encoding approach. Recent models,
such as NPGLM (Non-Parametric Generalized Linear Model) [29],
DGNN (Dynamic Graph Neural Network) [30] and TVAE (Temporal
network embedding method based on the VAE framework) [31],
have embedded representations of links between learning nodes
for a long time. Due to the transient nature of side interactions in
temporal interaction networks, these models are not applicable to
interaction networks.

3 THE PROPOSED FRAMEWORK
JODIE is a method used to learn embedding trajectories of user
u(t) ∈ Rn , ∀u ∈ U and item i(t) ∈ Rn , ∀i ∈ I,∀t ∈ [0,T ] from
the temporal sequence of user-item interaction Sr = (ur , ir , tr , fr ),
where user ur ∈ U and item ir ∈ I interaction within time tr ∈

R+, 0 < t1 ≤ t2 . . . ≤ T , and the associated feature vector is fr . For
ease of representation, the subscript r of the formula used in this
section will not be shown.

The framework of the proposed model JODIE is shown in Figure
3. Firstly, JODIE use the trained embedding update operation to
update the embedding representation of users and items. Then, the
future embedding of users can be predicted using the previously
observed state and the lasting time via the embedding projection
operation. Finally, the embedding of the entity are updated again,
when the next interaction of users and items occurs.

3.1 Embedding Update Operation
As shown in Figure 2, for interaction S = (u, i, t , f ) between user u
and course item i , we can yield dynamic embedding u(t) for user u
and i(t) for course i at time t by the embedding update operation.
The JODIE model is updated using two recurrent neural networks,
where RNNU is shared by users and is used to update the user
embedding, and RNNI is shared by courses and is used to update
the item embedding. The RNNs, corresponding to the user and
course respectively, are mutually-recursive. When user u interacts
with course i , RNNU use the embedding i(t−) of course i right
before time t as input to update the embedding u(t). i(t−) is the
same as the embedding of item i after a previous interaction with
any user.
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Note that, the JODIE model, proposed to solve the dropout pre-
diction problem of MOOCs, has static and dynamic embedding
when coding users and courses entities. The static embedding
ū ∈ Rd , ∀u ∈ U and ī ∈ Rd ,∀i ∈ I don’t change over time
and can be used to express fixed attributes such as the user’s long-
term interest. The JODIE model uses one-hot vector to code static
embedding for all users and courses. At the same time, user u and
course i also have dynamic embedding u(t) ∈ Rn and i(t) ∈ Rn

at time t respectively, which will change over time. The dynamic
embedding sequence of users/courses is called trajectory. Dynamic
embedding of an entity can reflect its current state, making it more
meaningful. For the same reason, RNNI uses the embedding u(t−)
of user u just before time t as input to updates the dynamic embed-
ding i(t) of item i . This results in mutually-recursive dependency
between the embeddings. In other words, the update of user and
course can be formalized as:

u (t) = σ
(
W u

1 u (t−) +W u
2 i (t−) +W u

3 f +W u
4 ∆u

)
(1)

i (t) = σ
(
W i

1 i (t
−) +W i

2u (t−) +W i
3 f +W

i
4 ∆i

)
(2)

where ∆u represents the time elapsed since user u interacted with
any course. ∆i represents the time elapsed since course i interacted
with any user. f represents feature vector of the interaction. The
matrixW u

1 , . . .W
u
4 andW i

1 , . . .W
i
4 are the parameter of RNNU and

RNNI respectively. σ represents the nonlinear sigmoid function.

3.2 Embedding Projection Operation
The JODIE model uses the embedding projection operator to pre-
dict the future embedding trajectory of users. The projection is
serialized to obtain embedding trajectories, and can then be used
for downstream tasks. Specifically, within the short duration ∆1
after time t , the user’s projected embedding û(t + ∆1) is close to its
previously observed embedding u(t). Given ∆ > ∆2 > ∆1, as time
goes on, the projected embedding drift towards û(t + ∆2) and even
û(t + ∆). Assuming the next interaction occures at time t + ∆, the
algorithm updates the user’s dynamic embedding to u(t + ∆) using
the embedding update operation.

The embedding projection operation takes the embedding of
user u at time t and the duration time ∆ as two inputs. Referred to
literature [8], time is considered into projected embedding through
Hadamard product. It’s obvious that using neural networks directly
to model the interaction between the spliced inputs is inefficiency.
Therefore, it is not feasible to simply concatenate the embedding
and the time. Instead, the JODIE model propose to use a tempo-
ral attention vector. Specifically, JODIE model converts ∆ to time-
dependent vectorw =Wp∆ using linear layerWp , and initializeWp
using zero-mean Gaussian. After that, the projected embedding is
obtained as an element-wise product of the time correlation vector
w with the previous embedding. We describe the process as follows:

û (t + ∆) = (1 +w) ∗ u (t) (3)

where the vector 1 +w acts as the time attention vector to scale
the user embedding u(t). When ∆ =0 and w=0, the projection em-
bedding is the same as the input embedding vector. The projected
embedding vector drifts over time. That is, as the value of ∆ in-
creases, the difference between the projected embedding vector and
the input embedding vector becomes larger.

3.3 Training Model
The JODIE model directly outputs the course embedding vector
ĩ(t + ∆), instead of the interaction probability between user u and
course i , which has the advantage of reducing the computation
time at inference time from linear to approximate constant. Most
existing methods [8, 9] take interaction probability as output, and
use forward transfer operation for each course to find course with
the highest probability score. By contrast, the JODIE model only
does forward pass to the prediction layer once, and directly output
the predicted item embedding. Then, the Locality Sensitive Hashing
(LSH) [32] is used to return the item with the closest embedding in
approximately constant time. In oreder to maintain the LSH data
structure, the model updates the LSH when the course embedding
updates.

For each interaction, the JODIE model can be trained by mini-
mizing the L2 distance between the predicted item embedding and
the real item embedding. Finnaly, the total training loss is:

Loss =
∑

(u, j,t,f )∈S

j̃ (t) −
[
j̄, j (t−)

]
2+λUu (t)− u(t−)2+λI j (t)−j(t

−)2

(4)
The first item of the loss minimizes the error of predictive em-

bedding. The last two items are used to regularize the loss and
prevent the continuous dynamic embedding of users and courses
from changing too much. λU and λI are scaling parameters to en-
sure that the loss is within the same range.

4 EXPERIMENT
Section 4.1 introduces the data sets used in the assessment, Section
4.2 introduces the relevant experimental setup, and Section 4.3
conducts some experiments on the JODIE model for the MOOC
dropout prediction task and compares it with some other models.

4.1 Dataset
In this paper, the prediction data set of online students’ drop-out
behavior published by KDD Cup 2015 was used to conduct correla-
tion analysis and experiment. The public data set consists of the
interactive behaviors of students learning courses on the online
platform. The dataset includes 7046 student users, 96 course items,
and the resulting 411,749 interactions. The recording period for
each course is 30 days. Each piece of data contains user node ID,
course node ID, time stamp of interaction behavior, four dimen-
sions characteristics, and label information indicating whether to
drop the course. Among them, the characteristic dimensions mainly
include "watching video time" and "browsing mode".

4.2 Implementation Details
Anticipate goals. For KDDCup 2015, the goal is to predict whether
the user-course status will change over the next 10 days, that is,
whether the user will drop out of an elective course. If the user
drops the course, the label "1" is assigned. For users who have not
dropped out, the label is always "0". The data set recorded 4,066
dropouts, accounting for about 0.98%. The user -course interaction
data in the MOOC platform belongs to the category imbalance
data. Due to the skewed distribution of labels, accuracy is not an
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Table 1: User Dropout Prediction Experiment

Method KDD Cup 2015 Improvement of JODIE

Logistic
Regression

0.526 18.8%

GRU 0.629 8.5%
JODIE 0.714 -

appropriate evaluation indicator. We use Area Under Receiver Op-
erating Characteristic Curve (AUC) value as indicators to evaluate
the performance of JODIE, which is a standard metric in tasks with
highly imbalanced datasets. It should be noted that the larger the
AUC value, the stronger the generalization ability of the model.

Partition of data. During the experiment, the data was seg-
mented in chronological order, the model was trained on the first
80% of interaction data, verified on the subsequent 10% of interac-
tion data, and tested on the last 10% of interaction data. Thus, the
model is trained to simulate the actual interaction. 128 is used as the
dynamic embedding dimension of all algorithms, and the one-hot
vectors are used as the static embedding. For fair comparison, all
the algorithms were run for 20 rounds, and the experimental results
were taken from the test data with the best performance on the
validation set.

Baseline algorithm. Logical regression and Gate Recurrent
Unit(GRU) are used as baseline algorithms in this paper.

Experiment 1: Prediction of dropout of MOOC platform users.
The experimental results of Jodie and baseline model in the

prediction of users of MOOCs platform dropping out of classes are
shown in Table 1. As can be seen from the table, the AUC obtained
by the JODIE is higher than the two baseline models. It is 18.8%
and 8.5% higher than logistic regression algorithm and recurrent
neural network, respectively.

Experiment 2: Accuracy of prediction for data of different mag-
nitude

In this experiment, we verify the accuracy of JODIE in the
dropout prediction problem of MOOCs by changing the magni-
tude of data. Here, we take the first 50,000 to 300,000 items from the
complete data set as a sub-data set according to the time sequence of
the interactions and on an increasing scale of 50,000 items. A total
of 6 data sets can be obtained. In each case, the first 80 percent of
interactions are used as training, the next 10 percent as validation,
and the next 10 percent as testing. Figure 4 shows the AUC of all
algorithms on MOOC data of different magnitude. We noticed that
JODIE’s predicted performance was stable as the magnitude of the
data changed and did not vary much from one data point to another,
consistently outperforming the baseline model. We suggest that the
stability of JODIE’s performance may come from the attention layer
of the model, which enables the model to assign greater weight to
more recent interactions.

Experiment 3: Robustness to different degrees of label flip at-
tacks.

Finally, we verify the effect of different degree of label flip attacks
[33] onmodel prediction.We distinguish the training data according
to the positive and negative examples. According to the scale of
1%-5%, the data labels in the training data are flipped randomly

Figure 4: AUC of Predictions On Different Levels Of Data
Size.

Figure 5: Robustness to Different Degrees of Label-Flip At-
tacks.

respectively to make the positive examples become negative ones
and vice versa. For the data set after the label flip attack, the model
is used to predict the dropout, so as to evaluate the robustness of
the model. As shown in Figure 5, we found that the label flip attack
has little impact on the performance of JODIE, and the overall
performance is the best.

5 CONCLUSIONS
Prediction of user drop-out is an important task inMOOCs platform.
This paper analyzes the performance of JODIE model for this task,
and gives a detailed description and introduction of the model’s
framework. Moreover, the performance of JODIE model and base-
line algorithm is compared through a series of experiments. The
results show that, compared with the baseline algorithms, JODIE
model can perform better in the MOOC dropout prediction task,
maintain higher accuracy for different levels of data, and maintain
better robustness when subjected to different degrees of tag flip
attacks. This article demonstrates that JODIE has a certain practical
significance in this application, even learning with noisy training
data. More complex situations could be considered in the future
work.



CSAE 2021, October 19–21, 2021, Sanya, China Lin Wang et al.

ACKNOWLEDGMENTS
This work is supported by Research Project of Teaching Reform in
Hunan province ([2018]436) and Training Program for Excellent
Young Innovators of Changsha (KQ2009009).

REFERENCES
[1] Daniel J(2012). Making Sense of MOOCs: Musings in a Maze of Myth, Paradox

and Possibility[J]. Journal of interactive media in education, 2012:257-284.
[2] Feng W, Tang J, Liu T X (2019). Understanding dropouts in

MOOCs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.
33(01): 517-524.

[3] Prenkaj B, Velardi P, Stilo G, et al (2020). A Survey of Machine Learning Ap-
proaches for Student Dropout Prediction in Online Courses[J]. ACM Computer
Surveys, 53(3): Article 57.

[4] Gardner J, Brooks C (2018). Student success prediction in MOOCs[J]. User Mod-
eling and User-Adapted Interaction, 28(2):127-203.

[5] Cui Y, Chen F, Shiri A, et al (2019). Predictive analytic models of student success
in higher education: A review of methodology[C].

[6] Tirumala SS (2020). Evolving deep neural networks using coevolutionary algo-
rithms with multi-population strategy[J]. Neural Computing and Applications,
32(16):13051-13064.

[7] Farajtabar M, Gomez-Rodriguez M, Wang Y, et al (2018). COEVOLVE: A Joint
Point Process Model for Information Diffusion and Network Co-evolution[C].
27th International World Wide Web, WWW 2018, April 23, 2018 - April 27, 2018:
473-477.

[8] Beutel A, Covington P, Jain S, et al (2018). Latent Cross: Making Use of Context
in Recurrent Recommender Systems[C]. Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, Marina Del Rey, CA, USA,
46–54.

[9] Dai H, Wang Y, Trivedi R, et al (2016). Deep coevolutionary network: Embedding
user and item features for recommendation[J]. arXiv preprint arXiv:1609.03675.

[10] Wang Y, Du N, Trivedi R, et al (2016). Coevolutionary latent feature processes for
continuous-time user-item interactions[C]. 30th Annual Conference on Neural
Information Processing Systems, NIPS 2016, December 5, 2016 - December 10,
2016:4554-4562.

[11] Kumar S, Zhang X, Leskovec J (2019). Predicting dynamic embedding trajectory
in temporal interaction networks[C]//Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 1269-1278.

[12] Kloft M, Stiehler F, Zheng Z, et al (2014). Predicting MOOC Dropout over Weeks
Using Machine Learning Methods[C]. EMNLP 2014.

[13] Taylor C, Veeramachaneni K, O Reilly U (2014). Likely to stop? Predicting Stopout
in Massive Open Online Courses[J]. ArXiv, abs/1408.3382.

[14] XingW, Chen X, Stein J, et al (2016). Temporal predication of dropouts in MOOCs:
Reaching the low hanging fruit through stacking generalization[J]. Computers
in Human Behavior, 58:119-129.

[15] Chanchary FH, Haque I, Khalid MS (2008). Web usage mining to evaluate the
transfer of learning in a web-based learning environment[C]. 1st International
Workshop on Knowledge Discovery and Data Mining, WKDD, January 23, 2008 -

January 24, 2008:249-253.
[16] Fei M, Yeung D (2015). Temporal Models for Predicting Student Dropout in

Massive Open Online Courses[C]. 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), 256-263.

[17] Wang W, Yu H, Miao C (2017). Deep Model for Dropout Prediction in MOOCs[C].
Proceedings of the 2nd International Conference on Crowd Science and Engi-
neering, Beijing, China, 26–32.

[18] Qiu J, Tang J, Liu TX, et al (2016). Modeling and Predicting Learning Behavior in
MOOCs[C]. Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining, San Francisco, California, USA, 93–102.

[19] Prenkaj B, Stilo G, Madeddu L (2020). Challenges and solutions to the student
dropout prediction problem in online courses[C]//Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 3513-3514.

[20] Nguyen GH, Lee JB, Rossi RA, et al (2018). Continuous-Time Dynamic Network
Embeddings[C]. Companion Proceedings of the The Web Conference 2018, Lyon,
France, 969–976.

[21] Zhang Y, Xiong Y, Kong X, et al (2017). Learning node embeddings in interaction
graphs[C]. 26th ACM International Conference on Information and Knowledge
Management, CIKM 2017, November 6, 2017 - November 10, 2017:397-406.

[22] Zhou L, Yang Y, Ren X, et al (2018). Dynamic network embedding by modeling
triadic closure process[C]. 32nd AAAI Conference on Artificial Intelligence, AAAI
2018, February 2, 2018 - February 7, 2018:571-578.

[23] Li, T., et al( 2018). Deep Dynamic Network Embedding for Link Prediction. IEEE
Access,. 6: p. 29219-29230.

[24] Li, J., et al (2017). Attributed network embedding for learning in a dynamic envi-
ronment. in 26th ACM International Conference on Information and Knowledge
Management, CIKM 2017, November 6, 2017 - November 10. 2017. Singapore,
Singapore: Association for Computing Machinery.

[25] Goyal, P., et al (2018). DynGEM: Deep Embedding Method for Dynamic Graphs.
ArXiv. abs/1805.11273.

[26] Sankar, A., et al (2020). DySAT: DeepNeural Representation Learning onDynamic
Graphs via Self-Attention Networks, in Proceedings of the 13th International Con-
ference on Web Search and Data Mining. Association for Computing Machinery:
Houston, TX, USA. p. 519–527.

[27] Rahman, M., et al (2018). DyLink2Vec: Effective Feature Representation for Link
Prediction in Dynamic Networks. ArXiv. abs/1804.05755.

[28] Sun, L., et al (2021). Hyperbolic Variational Graph Neural Network for Modeling
Dynamic Graphs, in AAAI 2021. p. 4375-4383.

[29] Sajadmanesh S, Bazargani S, Zhang J, et al (2019). Continuous-time relationship
prediction in dynamic heterogeneous information networks[J]. ACM Transac-
tions on Knowledge Discovery from Data (TKDD), 13(4): 1-31.

[30] Ma, Y., et al., Dynamic Graph Neural Networks (2018). ArXiv. abs/1810.10627.
[31] Jiao, P., et al (2021). Temporal Network Embedding for Link Prediction via VAE

Joint Attention Mechanism. IEEE Transactions on Neural Networks and Learning
Systems, p. 1-14.

[32] Leskovec, J., A. Rajaraman, and J.D. Ullman (2014). Mining of massive datasets:
Second edition. Mining of Massive Datasets: Second Edition: Cambridge Univer-
sity Press. 1-458.

[33] Yu Zheng-Fei, Yan Qiao, Zhou Yun (2021). A survey on adversarial machine
learning for cyberspace defense. Acta Automatica Sinica, 47(x): 1−25. doi:
10.16383/j.aas.c210089

arXiv:1609.03675

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 MOOC Dropout Prediction Algorithm
	2.2 Dynamic Embedding Represents Learning

	3 THE PROPOSED FRAMEWORK
	3.1 Embedding Update Operation
	3.2 Embedding Projection Operation
	3.3 Training Model

	4 EXPERIMENT
	4.1 Dataset
	4.2 Implementation Details

	5 CONCLUSIONS
	Acknowledgments
	References

